Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

Q is empty.

The TRS is overlay and locally confluent. By [15] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

The set Q consists of the following terms:

sum(cons(s(x0), x1), cons(x2, x3))
sum(cons(0, x0), x1)
sum(nil, x0)
weight(cons(x0, cons(x1, x2)))
weight(cons(x0, nil))


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

WEIGHT(cons(n, cons(m, x))) → SUM(cons(n, cons(m, x)), cons(0, x))
WEIGHT(cons(n, cons(m, x))) → WEIGHT(sum(cons(n, cons(m, x)), cons(0, x)))
SUM(cons(0, x), y) → SUM(x, y)
SUM(cons(s(n), x), cons(m, y)) → SUM(cons(n, x), cons(s(m), y))

The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

The set Q consists of the following terms:

sum(cons(s(x0), x1), cons(x2, x3))
sum(cons(0, x0), x1)
sum(nil, x0)
weight(cons(x0, cons(x1, x2)))
weight(cons(x0, nil))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

WEIGHT(cons(n, cons(m, x))) → SUM(cons(n, cons(m, x)), cons(0, x))
WEIGHT(cons(n, cons(m, x))) → WEIGHT(sum(cons(n, cons(m, x)), cons(0, x)))
SUM(cons(0, x), y) → SUM(x, y)
SUM(cons(s(n), x), cons(m, y)) → SUM(cons(n, x), cons(s(m), y))

The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

The set Q consists of the following terms:

sum(cons(s(x0), x1), cons(x2, x3))
sum(cons(0, x0), x1)
sum(nil, x0)
weight(cons(x0, cons(x1, x2)))
weight(cons(x0, nil))

We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

WEIGHT(cons(n, cons(m, x))) → SUM(cons(n, cons(m, x)), cons(0, x))
WEIGHT(cons(n, cons(m, x))) → WEIGHT(sum(cons(n, cons(m, x)), cons(0, x)))
SUM(cons(s(n), x), cons(m, y)) → SUM(cons(n, x), cons(s(m), y))
SUM(cons(0, x), y) → SUM(x, y)

The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

The set Q consists of the following terms:

sum(cons(s(x0), x1), cons(x2, x3))
sum(cons(0, x0), x1)
sum(nil, x0)
weight(cons(x0, cons(x1, x2)))
weight(cons(x0, nil))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs with 1 less node.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                    ↳ QDPOrderProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SUM(cons(s(n), x), cons(m, y)) → SUM(cons(n, x), cons(s(m), y))
SUM(cons(0, x), y) → SUM(x, y)

The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

The set Q consists of the following terms:

sum(cons(s(x0), x1), cons(x2, x3))
sum(cons(0, x0), x1)
sum(nil, x0)
weight(cons(x0, cons(x1, x2)))
weight(cons(x0, nil))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SUM(cons(0, x), y) → SUM(x, y)
The remaining pairs can at least be oriented weakly.

SUM(cons(s(n), x), cons(m, y)) → SUM(cons(n, x), cons(s(m), y))
Used ordering: Combined order from the following AFS and order.
SUM(x1, x2)  =  SUM(x1)
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  x1
0  =  0

Lexicographic path order with status [19].
Precedence:
SUM1 > cons2
0 > cons2

Status:
SUM1: [1]
0: multiset
cons2: [2,1]

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SUM(cons(s(n), x), cons(m, y)) → SUM(cons(n, x), cons(s(m), y))

The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

The set Q consists of the following terms:

sum(cons(s(x0), x1), cons(x2, x3))
sum(cons(0, x0), x1)
sum(nil, x0)
weight(cons(x0, cons(x1, x2)))
weight(cons(x0, nil))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SUM(cons(s(n), x), cons(m, y)) → SUM(cons(n, x), cons(s(m), y))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
SUM(x1, x2)  =  SUM(x1, x2)
cons(x1, x2)  =  cons(x1)
s(x1)  =  s(x1)

Lexicographic path order with status [19].
Precedence:
SUM2 > s1 > cons1

Status:
SUM2: [1,2]
s1: [1]
cons1: [1]

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ PisEmptyProof
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

The set Q consists of the following terms:

sum(cons(s(x0), x1), cons(x2, x3))
sum(cons(0, x0), x1)
sum(nil, x0)
weight(cons(x0, cons(x1, x2)))
weight(cons(x0, nil))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

WEIGHT(cons(n, cons(m, x))) → WEIGHT(sum(cons(n, cons(m, x)), cons(0, x)))

The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

The set Q consists of the following terms:

sum(cons(s(x0), x1), cons(x2, x3))
sum(cons(0, x0), x1)
sum(nil, x0)
weight(cons(x0, cons(x1, x2)))
weight(cons(x0, nil))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


WEIGHT(cons(n, cons(m, x))) → WEIGHT(sum(cons(n, cons(m, x)), cons(0, x)))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
WEIGHT(x1)  =  WEIGHT(x1)
cons(x1, x2)  =  cons(x2)
sum(x1, x2)  =  x2
0  =  0
nil  =  nil
s(x1)  =  x1

Lexicographic path order with status [19].
Precedence:
cons1 > WEIGHT1
0 > WEIGHT1
nil > WEIGHT1

Status:
0: multiset
WEIGHT1: [1]
nil: multiset
cons1: [1]

The following usable rules [14] were oriented:

sum(nil, y) → y
sum(cons(0, x), y) → sum(x, y)
sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n

The set Q consists of the following terms:

sum(cons(s(x0), x1), cons(x2, x3))
sum(cons(0, x0), x1)
sum(nil, x0)
weight(cons(x0, cons(x1, x2)))
weight(cons(x0, nil))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.